A randomized and fully discrete Galerkin finite element method for semilinear stochastic evolution equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite element methods for semilinear elliptic stochastic partial differential equations

We study finite element methods for semilinear stochastic partial differential equations. Error estimates are established. Numerical examples are also presented to examine our theoretical results. Mathematics Subject Classification (2000) 65N30 · 65N15 · 65C30 · 60H15

متن کامل

A Discontinuous Galerkin Finite Element Method for Hamilton-Jacobi Equations

In this paper, we present a discontinuous Galerkin finite clement method for solving the nonlinear Hamilton-Jacobi equations. This method is based on the Runge-Kutta discontinuous Galerkin finite element method for solving conservation laws. The method has the flexibility of treating complicated geometry by using arbitrary triangulation, can achieve high order accuracy with a local, compact ste...

متن کامل

A Weak Galerkin Mixed Finite Element Method for Biharmonic Equations

This article introduces and analyzes a weak Galerkin mixed finite element method for solving the biharmonic equation. The weak Galerkin method, first introduced by two of the authors (J. Wang and X. Ye) in [52] for second order elliptic problems, is based on the concept of discrete weak gradients. The method uses completely discrete finite element functions and, using certain discrete spaces an...

متن کامل

A meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation

In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...

متن کامل

Fully discrete finite element approaches for time-dependent Maxwell's equations

Many problems in sciences and industry involve the solutions of Maxwell’s equations, for example, problems arising in plasma physics, microwave devices, diffraction of electromagnetic waves. In this paper, we are interested in the numerical solution of time-dependent Maxwell’s equations in a bounded polyhedral domain in three dimensions. In the literature, one can find a great deal of work on n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2019

ISSN: 0025-5718,1088-6842

DOI: 10.1090/mcom/3421